We write out the expressions for the velocity on the axis of the jet:
Un/U = X28[1 + (1/8 — 2a,/a)X-4/8],
and also for the velocity and friction on the separation boundary:

u /U = X28[1 — (1/8 4 2a,/a)X-4/81,
Ty = —(Ulag) X—18(1/2)[4 + (ag/a, — A/G)X—48].

In the conclusion, we point out that for an outflow of a heavy liquid downward the solutions written out
will be valid for p;> p4and

- gV1U f1
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STABILIZATION OF SOLUTIONS OF TWO-DIMENSIONAL
EQUATIONS OF DYNAMICS OF AN IDEAL LIQUID

- G. V. Alekseev UDC 532.5 +517.9

Problems of solvability of initial- and boundary-value problems for two-dimensional nonstationary Euler
equations of dynamics of anidealliquid have been studied by many authors. A review andthe corresponding refer-
ences can be found, for example, in[1, 2]. However, the problem of asymptotic behavior of the solutions of the
Euler equation as t— < has not been investigated.

This is apparently explained by the fact that the corresponding boundary-value problems for a stationary
Euler equation do not possess the uniqueness property of the solution. In addition, examples exist where a
stationary boundary-value problem has a continuum of solutions, as, for example, the problem with the condi-
tion of no leakage of the liquid through the boundary of a region of flow. To obtain any results about the asymp-
totic behavior in the case of t —» of the solutions of nonstationary initial-value problems, we have to single
out a class in which the corresponding stationary problem has a unique solution (or a finite number of solutions).
One such class was introduced in [3]. The simplest representative of this class is motion without vortices. In
the present paper we present sufficient conditions under which the solutions of two-dimensional Euler equations
as t— o tend to a potential flow.

Vladivostok. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 85-92,
March-April, 1977. Original article submitted March 26, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No p.art
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

210



Fig. 1

1. Formulation of the Problem

Let  be a bounded simply connected region of the plane x = (x;, X with a piecewise-smooth boundary T.
For the sake of simplicity, we shall assume that the region @ has the form of a curvilinear four-cornered
figure A1, A,, A3, A, with the smooth sides AjAj+q, 1=j=4, A —A, (see Fig.1), sothat T, A,A UA¢A,, I‘l— ,A,,

Ty= AsA;, T,= U A,, = U ;. Byn=(n;, ny) we shall denote the vector of the inner normal to the bound—

ary at the pomts I‘\F Let Ip = {teR|T < t << oo}, where T is an arbitrary nonnegatlve number. The
boundaries AJ H and the angles n8j at the vertices Aj will be assumed to satisfy the conditions i

Ajdj 04, 0<a<<!; 0<<B; <12, 1<<ji<4 I
In the region 2 x I, we shall consider the initial-value problem for two-dimensional nonstationary Euler
equations .
P Lyegv = — ivy =10
v +v-yv yp, divv =0, w.1)
V]i—o = Vo (), V- B]r =7 (2, 8), ©|r, =0,

where v=(v,, vy is the velocity; p is the pressure; and w =rot v is the vorticity. We denote the contraction of
the function v (x, t) on T'; by 'y(l) (x,t) (=0, 1, 2) and assume that the condltlons

Vo CH(Q), divvy = 0, @y |r, = 0; II

70 =0,v0>0,y?<0; {y(z. ) do=0,t>0;
8 11
et x 1), i=1427v( 0 =v, - n,z=T\T} i

are fulfilled, where @, =rot vy; do is an element of length of an arc of the boundary I'; and Qis the region Q at
the instant t=0. In addition, we shall assume that there exists a vector u(z, f) & C¥Q X Io)such that u-njr =
v(z. 1), t>>0, and y(x,t) uniformly tends to the function vy, (x) as t — «, with the contractions y«,‘ (x) of the
function y« (%) on Tj (i=0, 1, 2) satisfying the conditions .
D=0,70 >e y@ < —¢,
P ey, i=1,2,

where € =const > 0.

A Side by side with the problem (1.1), we shall also consider the corresponding boundary-value problem for
the stationary Euler equations

veyv = —Ap, divv =0,

V-nle = s (2), 0fr, = 0. (1.2)
It is obvious that the potential flow u, (X) given by the expressions
»Ifot U = 0, div uw = 0, U nlp = 7{2), (1.3)

together with the pressure p, (X) =const—u°§(x) /2 is the solution of the problem (1.2). This solution is unique in
the class of functions introduced in [3], for which sup |e(z)[<] sup |e(z)!.
. ‘xEQ x=Ty

We shall find the conditions under which the solution of the nonstationary problem (1.1) tends, as t — =, to
the stationary potential flow u, {x).

To solve this problem we shall first indicate the conditions under which.any trajectory of the vector field
v(x, t}, commencing at t =0 in the region Q, leaves Q in a finite time, while subsequently we shall use the prop-
erty of conservation of vorticity along the trajectories of the field v, a property which is known for the solutions
of the problem (1.1).
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In the following we shall consider only vector fields which satisfy the condition div v=0. Following the
terminology of [4], we shall call any such vector field a flow. Ifinadditiontothe conditiondiv v =0the conditionv -
n| r =0is fulfilled, then the field vis called a tangential flow. Wenote that the solution v(x, t) of the problem (1.1)is
conveniently considered as the sum of two flows: w{x, t) =n(x, t) +w (%, t), where u is a nonstationary potential
flow given by the expressions

rotu =0, diva =0, u-nlp = v(z, 1), 1.4
while w is a tangential vortical flow which for t =0 is the solution of the problem
rot w = ez, t), divw =0, w-anfp =0, : (1.5)

wliere w(x, t) =rot v. In view of the assumptions made about the functions 7 (x, t) and vy, (%), obviously u &
C(Q X I), us =C(Q), with

”u(zv t) - Uoo(z)”c(ﬁ) - O, t— 00, (1-6)
Below, under the vectors u,, u, and w we shall understand flows defined, respectively, by the expressions (1.3)-
(1.5).

2. The Existence of a Generalized Solution{

We shall prove the existence of a solution of the problem (1.1) and indicate some of its properties. We
put

Q0=0x(0.7),3=x(07T),3=",%x(07),i=01,2

where T is a sufficiently large positive number. We denote by V the space of tangential flows v & HY(Q); by H
we denote the closure of elements of the space V in the norm H'(Q). We also introduce a set & of "trial" func-
tions ¢(z, t) = CY(Q), which are zero on £, and for t =T.

Definition 2.1. A flow v=u +w is called the generalized solution of the system (1.1), if we< L=(0, T; V),
w'e L0, T; H), rot w e L=(Q), v(x, 0)=vy(x),and for any function ¢ = @ the integral identity

o

F(v,9)= ‘qu rotv{¢' 4 v yo)dzdt + Y"’o (2)g(z,0)dz =0 e.1)

is fulfilled.

The existence of a solution of the problem (1.1) can be shown by the vanishing viscosity method. For this
we assume first that e,z) &= C*(Q), and consider the initial-value problem for the Navier —Stokes equations,
which in terms of the variables v, w has the form

o +v-yo—vAe =0, ot v = @, divv =0,

O =g = 0 (2), 0]z =0, v n|g =y (z, f). (2.2)

Reasoning in the same way as in [1] in the case of a smooth region, we can show that for each v>0 the problem
(2.2) has a unique solution v, =u +w, ,where for the functions w,, w, = rot w,, the estimates

fav HLGC(Q) <M= ﬂmo (z) uc(ﬁ),

ﬂwv HL“’(O,T;V) < Ml’ Ew;ﬂL'(O.T;E) < M21
T

v S [ vt dt < My
0

(2.3)

are fulfilled. Here the constants Mj(j =0, ..., 3) do not depend on v. By virtue of the estimates (2.3) from the
family of functions w,, @, we can extract sequences Wk =Wypk, Wy =@vk, such that for vy =0 (kK — ) wy ~Ww
strongly in LX(Q), wy —w weakly in L2 (@), with w =L=(0, T; V), w'e L¥0, T; H), rot w = o.

Let o > 0 be an arbitrary sufficiently small number. We denote by ¢  a function from the class C%@),
which is equal to zero in o, the neighborhood of the set I's, and equal to unity outside 24, the neighborhood T'3.
We multiply the equation for wy by the product ¢ ;¢ , where ¢ & @, and integrate the resulting expression by
parts. We have

H a
[ § onlose’ + Vi - v (ve0)] dzdt + nf 0, (2) 9o (2) @ (z, 0) dz = v, ” % Popdodt + Vi j S Vo, - V (909) dzdt. (2.4)
}:QUE‘ Q
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The second term on the right side of (2.4), in view of the last estimate in (2.3), tends to zero as v —0. The
tending to zero of the first term as v —0 can be shown with the use of Lemma 4.1 of [1}, which is valid at
regular points of the boundary I'. Going to the limit in (2.4) as vk — 0k — «), we find that the flow v=u+w
satisfies the integral identity

F (v, op) = XQS 0 [9o®’ + v - v (po9)] dzdt + [ 04 (2) 05 (2) ¢ (2, 0) dz = 0.

o

(2.5)
We shall show that the flow v satisfies the integral identity (2.1). For this it is sufficient to show that
the identity (2.5) remains valid if we put o =0 in it. We consider the difference '
F (v, 960) — F (v, ) EH@(%*i)(w’Jrv - Vo) dzdt +
Q

+ n( 4 (2) (9o — 1) @ (2, 0) dz -+ fa { opv-ypodzdt = 0. ‘ (2.6)

The first two terms in (2.6) obviously tend to zero as o ~~0. We consider the last term on the right side of
(2.6). Taking into account the fact that |gywy| =0(c~1), and applying the Holder inequality, we have

“j'(ocpv- VPodzdi] = j? 5 cxpv Voodzdt | <
Q 0 Uy )

- T
<({
)

where Upy = Uy (T'g) — 20, the neighborhood I'y. In view of the properties of the functions w, w it follows from
this inequality that the last term in (2.6) tends to zero as o —0. This means that v satisfies the integral identity

(2.1) for any function ¢ & ® and consequently, is the generalized solution of the problem (1.1) in the sense of
the Definition 2.1. ’

12T 1/2 T
(ov)? dz] [Y ) 9*(v9o)® dzdt] < const f S (ov)? dzdt,
b

Usg Uza 0 Ugg

Thus, the existence of a solution of the problem (1.1} is proved for a smooth function w(x). In the general
case, when v,(z) & CYQ) and, consequently, w,(z) = C(Q), the existence of a solution of the problem (1.1) is
proved by means of an approximation of the function c))'o(x) by a sequence of sufficiently smooth functions and
subsequently going to a limit.

We shall now establish certain properties ofthe generalized solution. Firstofall,inviewof rot w e L*(Q)
and the condition I, we can show, using the results of [5], that yw < L=(0, T; Lq(n)), where q > 2 is an arbitrary
number. From the Euler egquations, just as in [1], we find that w'eL3(Q) and, consequently, by enclosure
theorems, that w & C8(Q), where 8 <1 is an arbitrary positive number.

In addition, according to [B1, the flow v & u - w satisfies in the neighborhood U(x,, t;) of each point
(. ty) & Q the Lipschitz quasicondition

IV(.’L‘, t) - V(y7 t)‘ < K0|x - yl“’ + l In 11: - y”)v (2-7)

where (x, t),(y, t) e Ulz, f,) are arbitrary points; K, is a constant that does not depend on x, y, t.” The condi-
tion (2.7), as we know, ensures unique solvability in a certain neighborhood of the point (x, t) of the problem

¥y = v(y, ), Yooy = 2, 2.8

of the solution y=y(x, t, 7), which we shall call trajectories of the flow v. Consequently, through each point
(z, 1) e=Q there passes a single trajectory of the flow #. Using the results of the theory of dynamic systems,
we can show that each trajectory of the flow v begins on =, J @, and ends on I, | Q;. Here by 2, and QT we
have denoted the lower and upper bases of the cylinder Q. It can be shown that the function y(x, t, 7) is con-
tinuous (according to H&lder) with respect to x, t and continuously differentiable with respect to 7 everywhere
in @x[Q, Tl

We introduce for each point (z, t) = Q the functions T y(x, t) and y,(x, t), representing time and the point of
entry of the trajectory y(x, t, T) into the region 2. Reasoning in the same way as in [1] in the proof of Lemmas
6.1 and 6.2, we can show that t,, y, = C(0) and the function w =rot v has the representation

0, T, (2, £) > 05

O @0 = 4 (2 )7 (2 1) = 0. (2.9).
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From (2.9) and the conditions II, in particular, it follows that e(z, t) & C(Q). As a result, we arrive at the fol-

lowing theorem. rep-

THEOREM 2.1, Let the conditions I-III be fulfilled. Then there exists a generalized solutionw(x, t) of

the problem (1.1), Wlth ve 0), 0< 0 < 1, while the function @ =rot v is continuous in Q and has the re-
._resentat;on 2.9).

Remark 2.1. If we assume that the initial and boundary functions are sufficiently smooth, then, using
(2.9) and the methods of [1], we can show that the generalized solution indeed is classical and unique.

We introduce the notation
Hoo@)le@ = M-

In the following the number A is considered to be a parameter which varies between the limits 0 <A =<1.

3. Asymptotic Properties of the Trajectories

¥

We shall study the asymptotic properties of the solutions of the problem (2.8) which determine the trajec-
tories y(x, t, 7) of the flow v. From the results of Secs. 1 and 2 it follows that v =u+w, where uis a solution of
the problem (1.4), while w & C8(Q), with

1 loagg) < Kab- (3.1)
Here K is a certain constant depending on 6.

We agree on the following terminology. If at a certain time instant v, >0y, = y(z, t, ) = T, (or I‘z) then
we shall say that the trajectory y(x, t, ) at the instant 7, enters into the region Q (respectively, comes out of
2), while the point (y;, 74 will be called the point of entry (the point of exit) of the given trajectory in relation
to the region 2. If at all time instants T=>t the trajectory y(x, t, 7) is completely contained in the region
Q U I'y, then such a trajectory is said to be asymptotic in Q.

We shall consider in @ the autonomous system
z' = (). _ (3.2)

The solutions of the system (3.2) are called, as we know, the streamlines of the vector field u,(x) in the region
Q. Using the condition IV, we can show that at all points of Q,u, =0 [3]. Hence, it is easy to conclude that
through each point z e= Q@ there passes a single streamline, with each streamline entering into  through the
part T; and coming out of @ through the part T'. Since the streamlines coincide with the trajectories of the
flow u., this fact signifies that in the region @ there are no asymptotic trajectories of the flow u,. An analo-
gous fact holds for a nonstationary flow v(x, t)

We denote by t; the value of the time t, starting from which the relation
7@ ) — v (@) | <e/2,x=Ty U Ty, t 221,

is fulfilled; here € is the same as in IV. Such a value t, exists in view of the uniform convergence of vy to Yoor
For any set D, by Ugs (D) we shall denote the neighborhood 6 ofthe set Drelative to Q, i.e., a set of points r = Q,
satisfying the condition dist (x, D)<é. We put Q; =\ Us (T'; U Ty).

LEMMA 3.1. There exist numbers § =45 (€) and s =s(€) such that in the region Us(I'j) there are no asymp-
totic trajectories of the flow v for A = [0, 1}, with any trajectory from the initial point in Ug (T} X I, exiting
from Ug (I)) (i=1, 2) within a time interval At <s.

Proof.  We shall first consider the part I'y, We shall assume for the sake of simplicity that I'y is a seg-
ment of the axis X,, the region @ lies in the half-plane x; < 0, and in a certain neighborhood of the corner points
Ag and A, the nonpenetrable parts of the boundary I' are segments of straight lines. If this is not so, then it is
first necessary to map a certain neighborhood of T'y relative to & onto a region having a boundary of this type
(for example, by means of conformal mapping) and, subsequently, carry out analogous considerations.

According to the assumption just introduced and in view of (1.4), (1.5) we have w,|2= 0, u1|r2=-'y(x, t).
From the properties of the flow u and the relations (3.1) it follows that there exists a neighborhood Ug (T'5)
such that for (z, {) & Us(T,) X Iy, |wi(z, 1)]<e/8, uylx, t)= €/4 and, consequently, v, t) =uy(x, t) +wy(x, t)=
e/8 for all X 10, 1. We put s=8 3/€. Then, obviously, any trajectory from the initial point in Ug (I’ X I
goes out of Ug (T'y), and hence out of & after the time At <s. This, in particular, signifies that in the region
Ug (T'y) there are no asymptotic trajectories of the flow v.
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In a similar manner we consider the part I'y; only instead of the flow v here it is more convenient to con-
sider the flow —v. The lemma is proved.

Remark 3.1. From the proof of the lemma we note that any trajectory of the flow v exiting from Ug (T'y),
enters into & 5, while any trajectory exiting from Ug (I'y), also goes out of .

We now elucidate the behavior of the trajectories of the flow v outside the neighborhoods of the parts Ty
and T'y. We first shall study the properties of the trajectories of the potential flow u given by the system of
equations

2’ = u(z, 1). 3.3)
The condition (1.6) signifies that the system (3.3) relates to the class of so-called asymptotically autonomous
systems, the properties of solutions of which are close to the properties of the solutions of the autonomous

system (3.2) [6, 7]. In particular, we can show that in the region @ there are no asymptotic trajectories of the
flow u and all trajectories of the flow u, starting at t =0 on Q, leave & after a finite time to.

Indeed, for the flow u,, such time exists and is finite. We denote it by 7,,. We put K; =|yu« les
% = /4t exp (2K,1.,), and let t;=t; be the value of time starting from which |lu(z, ¢) — Ueol®)|e@ < *%- %’i}e take
in the region X5 an arbitrary point x; and denote by x=x(xy, t;, 7) and z=z(x,, t;, T) the solutions of the systems
(3.2), (3.3) satisfying the initial condition

Zfomy, = 2\ 0y, = 24
The difference z — x is obviously the solution of the problem ;
d .
(2= 2) = 1 (5, 1) — Vo (2) + Wes () — 11 (2), 3.4)
(2— 2) [t=z, = 0.

Sealar multiplying (3.4) by y ~ z and assuming that z, z = Q;2, We obtain
%]z—x[QZKzlz-—x[+2%.
Hence, applying the lemma of Gronwell, we deduce that at the instant t, of exit of the trajectory x(x,, t;, 7)
from Qg /5 we have
[2(ay, 1y, £) — 22y, 4y, ty)] << /2,

and, consequently, z(r,, t;, t,) & Us (). Since X, is an arbitrary point, then, applying Lemma 3.1, which obvi-
ously is valid for the flow a, we arrive at the sought result. In the role of the time t,, we can take the quantity
t1+ T +25. We formulate the results thus obtained in the form of a lemma.

_ LEMMA 3.2. There exists a number t, such that any trajectory of the flow u from the initial point in
Q x I, goes out of Q after a time interval At <t

Using Lemma 3.2, we obtain analogous results for the flow v. In fact, we put K3 = sup I V“”C(ﬁa/z)’ Ay=
[IEeiY

6/4K1t°°exp(2K3too) Then reasoning in the same way as in the proof of the statement of Lemma 3.2, we arrlve
at the following result.

LEMMA 3.3. There exist numbers A,> 0 and S such that for all A& 10, 4,] any trajectory of the flow v
from the initial point in Qg x Iy, goes out of Q5 into the region Ug (T, after a time interval At <8.

We put Tes =ty +2s +8. ‘Then from Lemmas 3.1 and 3.3 in an obvious manner we have the following
theorem.

THEOREM 3.1. Let the conditions (1.6), (3.1) be fulfilled. Then there exist numbers A, and T,, such that
for all A= [0, A, in the region 2 there are no asymptotic trajectories of the flow v, with any trajectory of the
flow v commencing at t=0on{, going out of @ at the instant t=< T_.

From Theorems 2.1 and 3.1 follows the basic theorem.

THEOREM 3.2. Let the conditions I-IV be fulfilled. Then there exist numbers A ;> 0 and T, such that
for all A [0, 4,1 and t =T, rot v=0 and, consequently, v(x, t) = u(x, t).

Theorem 3.2 has two obvious corollaries.

COROLLARY 1. (Theorem of Settling). Under the conditions of Theorem 3.2 the solution of the problem
(1.1) for all A = 10, A, }luniformly tends, for £t — «, to the potential flow u. (x) as the only solution of the corre-
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sponding stationary problem (1.2). In addition, if y (X, t} = y,, &) for t = T, then the solution of the problem (1.1)
" settles relative to the solution of the problem (1.2) after a finite time Te.

COROLLARY 2. (Theorem on"Asymptotic Stability of a Potential Flow). Under the conditions of Theorem
3.2 the potential flowu,, (%) is asymptotically stable relative to small perturbations which are potential at the
entry of the region,

The author expresses his gratitude to A. V. Kazhikhov for the valuable observations during the appraisal
of the results of the investigation.
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INCLINATION ANGLES OF THE BOUNDARY IN MOVING
LIQUID LAYERS

O. V. Voinov UDC 541.24:532.5

In this paper creeping flows in thin layers of a viscous liquid are discussed with the capillary forces
taken into account, and solutions describing the inclination angles of the boundary are found. The contact angle
of a liquid on a solid surface in the static state is expressed in terms of the specific surface energies. Upon
movement of the liquid the contact angle (dynamic) differs from the static value. A very thin "precursor” film
can be observed in front of the liquid mass which is spreading over the solid surface [1, 2]. There are indica-
tions to the effect that the value of the dynamic contact angle depends on the viscous forces {3].

1. Established Flow of a Liquid Layer over a Dry Surface and the Contact Angles. The pressure p inside
a thin liquid layer on a flat solid surface differs from the pressure p, in the gas by the amount of the capillary
differential p=po—0'62h/8x2 (o is the surface tension coefficient; X is the coordinate along the layer; and his
the thickness of the layer).

The equation of motion of the layer in the case of small Reynolds numbers under the action of capillary
forces can be written with the help of the hydrodynamical theory of lubrication as

o [o. 303h)_—__i’5
FAY TR A T

Non-steady-state solutions of this equation are investigated in the linear approximation in [4]. Let us con-
sider steady-state solutions in the nonlinear formulation. For a steady-state wave

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 92-99, March-
April, 1977. Original article submitted April 14, 1976.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N..Y. 10011. No qart
of this publication may be reproduced, stored in q retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

216



